Consensus sequences for good and poor removal of uracil from double stranded DNA by uracil-DNA glycosylase.
نویسندگان
چکیده
We have purified uracil DNA-glycosylase (UDG) from calf thymus 32,000-fold and studied its biochemical properties, including sequence specificity. The enzyme is apparently closely related to human UDG, since it was recognised by a polyclonal antibody directed towards human UDG. SDS-PAGE and western analysis indicate an apparent M(r) = 27,500. Bovine UDG has a 1.7-fold preference for single stranded over double stranded DNA as a substrate. Sequence specificity for uracil removal from dsDNA was examined for bovine and Escherichia coli UDG, using DNA containing less than one dUMP residue per 100 nucleotides and synthetic oligonucleotides containing one dUMP residue. Comparative studies involving about 40 uracil sites indicated similar specificities for both UDGs. We found more than a 10-fold difference in rates of uracil removal between different sequences. 5'-G/CUT-3' and 5'-G/CUG/C-3' were consensus sequences for poor repair whereas 5'-A/TUAA/T-3' was a consensus for good repair. Sequence specificity was verified in double stranded oligonucleotides, but not in single stranded ones, suggesting that the structure of the double stranded DNA helix has influence on sequence specificity. Rate of uracil removal appeared to be slightly faster from U:A base pairs as compared to U:G mis-matches. The results indicate that sequence specific repair may be a determinant to be considered in mutagenesis.
منابع مشابه
A kinetic analysis of substrate recognition by uracil-DNA glycosylase from herpes simplex virus type 1.
Uracil-DNA glycosylase (UDG) is responsible for the removal of uracil from DNA. It has previously been demonstrated that UDG exhibits some sequence dependence in its activity, although this has not been well characterised. This study has investigated the sequence-dependent activity of UDG from herpes simplex virus type-1 (HSV-1). A more detailed analysis has been possible by using both kinetic ...
متن کاملInefficient excision of uracil from loop regions of DNA oligomers by E. coli uracil DNA glycosylase.
Kinetic parameters for uracil DNA glycosylase (E. coli)-catalysed excision of uracil from DNA oligomers containing dUMP in different structural contexts were determined. Our results show that single-stranded oligonucleotides (unstructured) are used as somewhat better substrates than the double-stranded oligonucleotides. This is mainly because of the favourable Vmax value of the enzyme for singl...
متن کاملMutations at Arginine 276 transform human uracil-DNA glycosylase into a single-stranded DNA-specific uracil-DNA glycosylase.
To investigate the role of Arginine 276 in the conserved leucine-loop of human uracil-DNA glycosylase (UNG), the effects of six R276 amino acid substitutions (C, E, H, L, W, and Y) on nucleotide flipping and enzyme conformational change were determined using transient and steady state, fluorescence-based, kinetic analysis. Relative to UNG, the mutant proteins exhibited a 2.6- to 7.7-fold reduct...
متن کاملNucleotide sequence of the Streptococcus pneumoniae ung gene encoding uracil-DNA glycosylase.
Uracil-DNA glycosylase, the enzyme responsible for the removal of uracil from DNA (1), is directly involved in mutation avoidance (2). Indeed, it is likely to prevent transition mutations by removing uracil that results from deamination of cytosine. It has been proposed that the removal of misincorporated uracil by uracil-DNA glycosylase also plays an indirect role in correction of replication ...
متن کاملCorrelated Mutation in the Evolution of Catalysis in Uracil DNA Glycosylase Superfamily
Enzymes in Uracil DNA glycosylase (UDG) superfamily are essential for the removal of uracil. Family 4 UDGa is a robust uracil DNA glycosylase that only acts on double-stranded and single-stranded uracil-containing DNA. Based on mutational, kinetic and modeling analyses, a catalytic mechanism involving leaving group stabilization by H155 in motif 2 and water coordination by N89 in motif 3 is pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 21 9 شماره
صفحات -
تاریخ انتشار 1993